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The stability of a stratified flow 

By WILLIAM PAUL GRAEBEL 
Department of Engineering Mechanics, University of Michigan, Ann Arbor, Michigan 

(Received 20 November 1959) 

This paper deals theoretically with the problem of the hydrodynamic stability 
of a stratified flow of a viscous fluid. The primary flow consists of two laminar 
streams of viscous fluids of different densities flowing in opposite directions 
between two parallel inclined planes under the action of gravity. The effect of 
surface tension at  the interface of the two fluids is included in the formulation 
of the problem. 

Since instability can be expected to occur at  low Reynolds numbers when the 
inclination is nearly vertical, the solution of the Orr-Sommerfeld equations is 
developed as a power series in the transverse space co-ordinate. It is shown that 
for the vertical case, the flow is unstable for all values of the Reynolds number. 
Surface tension is found to influence both the direction and celerity of the dis- 
turbance. Results are also given for inclinations slightly away from the vertical, 
where small critical Reynolds numbers do exist. 

1. Introduction 
For most parallel flows past fixed boundaries whose stability has been in- 

vestigated so far, instability occurs at  rather large Reynolds numbers. The Orr- 
Sommerfeld equation (see Lin 1955) governing the stability of such flows must 
therefore be solved for large values of the Reynolds number, which appears as 
a parameter in these equations. The asymptotic solutions of the Orr-Sommerfeld 
equation, appropriate for large Reynolds numbers, have singularities at  the 
critical points where the wave velocity of the disturbance is equal to the velocity 
of the mean flow. Great care must therefore be exercised in the evaluation of 
these solutions as a critical point is crossed. These singularities of the solutions 
are, however, not inherent in the Orr-Sommerfeld equation, and are introduced 
entirely by the method of solution. For flows which can be expected to be 
unstable at low Reynolds numbers, the appropriate solutions can be expressed 
in ascending powers of the Reynolds number or of one of the co-ordinates. Since 
asymptotic solutions are not needed, the aforementioned singularities do not 
occur. The study of the stability of flows which can be expected to become 
unstable at low Reynolds numbers can therefore be carried out by conventional 
methods. In  view of this, it  is perhaps somewhat surprising that until recent 
years problems of hydrodynamic instability at  low Reynolds numbers have been 
neglected by research workers. 

The flow whose stability is studied here is a stratified flow of two fluids of 
equal viscosity but different densities. It is entirely motivated by gravity and 
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its velocity distribution is antisymmetric, with the lighter fluid flowing in a 
direction opposite to that of the heavier fluid, with a point of inflexion of the 
velocity profile at the interface. Since a point of inflexion is known to have a 
destabilizing effect, and since the work of Yih (1954) and of Benjamin (1957) 
has shown that a free surface also has a destabilizing effect, it can be expected 
to be unstable at low Reynolds numbers, especially if the slope of the mean flow 
is steep. The Orr-Sommerfeld equation will therefore be solved for small Reynolds 
numbers. 

The type of flow investigated here is encountered in extraction columns in 
chemical engineering, and can also be found in closed channels such as tunnels 
and mine shafts. It can also be expected that the results have some bearing on 
stratified flows occurring in the oceans and the atmosphere, where layers of 
warm water or air flow over and counter to colder water or air (i.e. the flow of air 
after cold fronts). 

2. The primary flow 
The present investigation concerns the stability of a steady laminar stratified 

flow of an incompressible viscous fluid between two parallel fixed planes. The 
spacing of the planes is denoted by 2b. The origin of the co-ordinate system is 
taken half-way between the planes, with the X-axis parallel to the planes. The 
planes are inclined at an angle 8 with the horizontal (see figure 1). 

FIGURE 1. Diagram of the primary flow, showing the co-ordinate 
axes and the velocity profile. 

The fluid occupying the region 0 < Y < b,  with densityp,, flows up the inclined 
plane in the direction of negative X .  The fluid occupying the region - b < Y < 0, 
with density pz greater than pl, flows down the plane under the action of gravity. 
The viscosity ,LA of the two fluids are considered equal. Gravity is the sole 
motivating force for the flow, with the heavier fluid displacing the lighter fluid 
in a reservoir at X = +co. The volumetric discharge across the channel is 
therefore zero. 
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The Navier-Stokes equations which govern the primary flow are 

(1)  

(2) 

where u, and g2, the components of velocity of the two fluids in the X-direction, 
are functions of Y only, and letter subscripts following commas denote partial 
differentiation with respect to that quantity. The components of velocity in the 
Y- and 2-directions are zero. The condition of continuity is thus automatically 
satisfied. Pressure is indicated by P and the gravitational acceleration by g. 

These equations are easily solved for 0, and u2. It can easily be verified that 

} 
1 

o = - 4, +p,g sin 6 +pDl, I-l-, 

o = - P~, -plg cos e for o 6 Y 6 b, 

o = - P  2, s + Pa9 sin 0 +Pi72, Y Y, 
o =  -~~, , -p ,gcose for -6  6 Y G 0, 

and 

and 

where 

Y 
0 2 = - U M [ + z + ( : ) 2 ]  ( - b 6  YGO),  (4) 

is four times the maximum velocity. The boundary conditions corresponding 
to (3) and (4) are conditions of no slipping at  the fixed boundaries. The condition 
of zero volumetric discharge is also satisfied by (3) and (4). The pressure gradient 
in the 5-direction is 

p1,x = p2.x = a(P2fPl)gsine. 

Thus, the &variation of pressure is the same as that of the hydrostatic pressure 
in a fluid of density 3(p2+p,), while the Y-variation corresponds to a hydrostatic 
pressure in the fluids at present under consideration. 

3. Formulation of the stability problem 

The basic equations to be satisfied are the Navier-Stokes equations and the 
continuity equations. Following the usual approach to stability problems, it is 
assumed that the perturbed velocity and pressure fields are expressible in power 
series expansions in terms of an amplitude parameter E ,  assumed small and 
constant (see Lin 1955, 0 1.3). Upon substituting these expansions into the field 
equations and setting coefficients of powers of E to zero, it  is noted that the 
equations in EO are those already described as governing the primary flow. The 
equations in are 

A. Differential equations 

(6) 

( 7 )  

u ~ x + v ~  y = 0, (8) 

1 P 
Pi Pl 

- 
?hi*, T + ui"i*,X + o{, y v* = --Pt X -k - v2uT, 

1 P 
Pi Pi 

- 
v8T+Uivi*,X = --Ppr,+-V%:, 

21-2 
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where the disturbance is assumed to be a two-dimensional one. The convention 
has been adopted that capital letters refer to the primary flow and small letters 
with an asterisk in the upper right-hand corner refer to the first-order disturbance 
flow. The equations hold in the upper region when i = 1 and in the lower region 
when i = 2. As is customary in stability analyses, attention will be confined 
solely to the first-order equations, with the assumption that for sufficiently small 
disturbances the linearized equations can be used without appreciable error. 

To facilitate the solution of (6)) (7) and (8), it  is convenient to put them in 
dimensionless form. The following dimensionless parameters are introduced 

Formulating (6), (7) and (8) in terms of these parameters, the following dimen- 
sionless equations are obtained 

1 
vi,t+Uivi,x = -pi,,+-v2vi, (11) 

%,z-FVi,y = 0, (12) 
Ri 

in which Ri is the Reynolds number based on the half-spacing b and UJf. Since 
the flow is motivated by gravity, it  is expected that the Reynolds number and 
the Froude number F are not independent of one another. Such is indeed the 
case, for if F is defined by F2 = U&/gb, then from the primary flow (5) provides 
the relationship F2 = ~(r-l)R,sinO. 

To reduce the number of equations which are to be solved, it is convenient to 
introduce stream functions. To simplify solution of (lo), (11) and (12)) the 
solutions will be assumed to have exponential time factors. Further, to reduce 
the partial differential equations to  ordinary differential equations, it  is assumed 
that the disturbance may be resolved into Fourier components, which are thus 
periodic in x. A general disturbance then would consist of either a Fourier series 
or a Fourier integral of such components. To determine the stability of the flow 
it is sufficient to consider the effect of a single Fourier component of general 
period. 

Only two-dimensional disturbances are considered, since the work of Squire 
(1933)) Yih (1955) and others has shown that the stability or instability of a 
three-dimensional disturbance can be determined from that of a two-dimen- 
sional disturbance at a higher Reynolds number. 

The velocity components and the pressure can thus be assumed to have the 
following forms, in whichf(y) and h(y)  are introduced as ‘stream functions’ to 

(13) 
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u, = h'(y)  eia(z-ct), ,I 
(15) 

p ,  = qz(y) eia(%&) 

in - 1 < y < 0, where primes denote differentiation with respect to y.  The 
dimensionless wave number a is related to the wave length h of the disturbance 
by a = 27~b/h. The real part of c represents the dimensionless disturbance celerity, 
and a times the imaginary part of c gives the dimensionless growth rate of the 
disturbance. 

Upon solving (lo), (ll), (14) and (15) for the pressure terms, the following 
are obtained 
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in 0 6 y 6 1, and 

v2 = - iah( y) eia(x+t) 

(16) 

1 
q, = a, (f "' - a2f') + (c  - U,) f '  + u; f, 

q; = a, (a?'' - ay) + a2(c - U,)f 1 

in 0 6 y 6 1, and 
1 

q 2  = a, (h"' - a%') + (c - U,) JLI + Uih, 

J 1 
q;. = iaR2 (a%" - a4h) + aZ(c - U,) h 

in - 1 6 y 6 0. The pressure terms can now be eliminated to obtain 

f iv  + [ - 3a2 + iaR1(c - U,)] f "  + [a4 + iaR, Ui + ia3Rl( U, - c)]f = O (18) 

in 0 6 y 6 1, and 

hiv + [ - 2a2 + iaR2(c - U,)] h" + [a4 + iaR, Ui + ia3R,( U, - c ) ]  h = 0 (19) 

in - 1 6 y 6 0. These equations are the Orr-Sommerfeld equations. From 
(3), (4) and (9) the functions U, and U, are 

u, = -y+y2, u, = - y -  y2. (20 )  

B. Boundary conditions 

Since the differential equations (18) and (19) are two in number and each is 
of the fourth order, there must be eight boundary conditions imposed to specify 
the mathematical problem completely. Two conditions are imposed at  each of 
the fixed boundaries, and a total of four are imposed at  the interface. 

Since the fluids are considered viscous, there must be no slip at the fixed 
boundaries. Hence, in terms of the stream functions, 

f(1) = 0, f'(1) = 0, h( - 1) = 0, h'( - 1) = 0. (21)  

The interface is assumed to be displaced from the x-axis by a small amount 
which in dimensional form is denoted by bv. This introduces a further unknown 
into the problem, which, however, may be readily determined from the kine- 
matical condition that the component of velocity at  the interface must equal the 
time derivative of 7. In  what follows, quantities evaluated at the interface are 
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expanded in a Taylors series about y = 0, and 7 is considered to be of the same 
order as the velocity disturbances. In  keeping with the previous linearization, 
only first-order disturbance terms are retained. 

At the interface, the velocity components must be continuous; hence 

f(0) = h(O), f’(0) = h’(0). (22) 

The kinematic condition at the interface is, in dimensionless terms, 

v = 7,t 
at y = 0. Then 7,  = - iaf( 0) eiab-cl) 

and upon solving for 7 

(33) 

The shear stress must also be continuous across the interface. To the first 
order, the dimensionless shear stress at the interface is given by 

1 
R 

Tx2/ = -(u’+u’”2+U’’~). (35) 

Therefore the boundary condition imposed is, after some simplification, 

4f( 0) + cf”( 0) - ch”( 0) = 0. (26)  

The dimensionless normal stress at  the interface is 

where P is the pressure in the primary flow. The condition imposed is that the 
difference in normal stresses must be equal to the curvature of the interface times 
y, the surface tension. Since P must already be continuous, and since 

P, kr = - gp cos e, 
the boundary condition becomes 

where W is the Weber number defined by W = plbU&/y. This can be written 
entirely in terms of the stream functions by using (16) and (17). The resulting 
equation is, after further simplification, 

c[ f”(O)-h”(O)]+(r -  l)iaR,c[f(o)-Cf’(0)]+ia[4cotB+a2X]f(O) = 0. (29) 

The parameter AS is defined by 

and represents the ratio of surface tension to  viscous forces. 
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4. Solution of the stability problem 
A. General 

For the purpose of solving (18) and (19), much labour can be saved by employing 
the following notation: 

B = a2, 

A,=iaR, in O <  y <  1, 

A ,  = iaR, in - 1  < y < 0, 
A = {  

+ I  in O < y 6 1 ,  

6 = {  - 1  in - l < y < O .  

Then (18) and (19) can both be solved simultaneously by solving 

$v + [ - 2B + A ( C  + y - Sy2)] #" + [B2 + 3.46 + AB( - c - y + 6y2)] # = 0. (32) 

As discussed in the Introduction, instability can be expected to occur at low 
Reynolds numbers when the inclination 0 approaches 90". Two techniques at 
once are suggested as alternate methods of solution. The first, expansion of @ 
in ascending powers of the Reynolds number, is certainly the more typical of 
stability problems and was used by Yih (1954). The alternate approach, expan- 
sion of # in powers of the co-ordinate y ,  has, to the best of the author's know- 
ledge, been previously employed successfully only by Benjamin (1957) in spite 
of its early recognition by Kelvin (1887) and others. This method seems more 
useful in carrying out the solution for q5 to higher powers of the Reynolds number, 
and conclusions are drawn on the basis of these calculations. Of course, the 
validity of approximations based on either method can be determined only 
a posteriori. 

B. Expansion in powers of the co-ordinate y 

Following Benjamin (1957)) a solution of the form 

m 

&Y) = c anyn 
n=O 

(33) 

can be assumed. It is most convenient to expand around the origin since four 
of the boundary conditions must be satisfied there. Upon substituting (33) into 
(32) and setting coefficients of y n  to  zero, the following recurrence relation is 
obtained : 

(n - a)! 
n! 

a, = ___ {(n - 2) (n - 3) (2%- A c )  - (n - 4) (n - 3) A U , - ~  

+ [A6(n -4 )  ( n - 5 )  - B ~ - ~ ~ A ~ + A B ~ ] U , _ , + A B ~ , - , - A B G ~ , _ , ) .  (34) 

All of the a, for n 2 4 can now be found from (34) in terms of a,, a,, a2 and a3. 
Since these four coefficients are arbitrary, four independent solutions of the 
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fourth-order equation are thus obtained. They are (where ao, a,, a2 and a3 have 
been set equal to 1, 1, 1 and 1/3!, respectively) 

$,(y) = 1 +(1/4!) ( A B c - B ~ - ~ A ~ ) @ + ( ~ / ~ ! ) A B Y ~  

+(l/6!) (2A2c6-6AB6+3AB2c-A2B~-2B3)y6 

+ ( 1 /7 ! ) ( 6A2S + 5AB2 - 4A2Bc2) y7 

+(1/8!) ( -20A2-3B4+6AB3~-4A2B2~2-20AB26+ 18A2Bc6 

- 2~3C26 + ,4313~3 - 4 ~ 2 ~ )  Y8 

+ (1/9!) ( 14AB3 + 50A2BS+ 9A3Bc2 - 22A2B2c - 16A3c6) y9 + . . ., (35) 

5b2(y) = y+(1/5!) (ABc-B2-2AS)y5+(1/6!)2ABy6 
+ ( 1/7 ! ) (2A2c6 - 1 OAB6 + 3AB2c - A2Bc2 - 2B3) y7 

+(1/8!) (8A28+8AB2-6A2Bc)y8 

+(1/9!) ( -36A2-3B4+6AB3~-36AB2S+30A2B~6-4A2B2~2 

- 2 ~ 3 C 2 ~ -  ~ o A ~ B + A ~ B C ~ )  y9 

+ (i / io!)  ( 2 0 ~ ~ 3  + 122,42116 + 1 2 ~ 3 . ~ ~ 2  - 3 0 ~ 2 . ~ 2 ~  - 2 0 ~ 3 ~ 6 )  ~ 1 0  + . . . , 
(36) 

$3(y) = y2+(1/4!) (4B-2Ac)y4-(l/5!)2Ay5 

+ (1/6!) ( 6B2 - 6ABc + 2A2c2) yG + (1/7 !) ( 8A2c - 10AB) y7 

+(l/8!) (SA2+ 16AB6-20A2c6f8B3- 12AB2~+8A2B~2-2A3~3)ys  

+(1/9!)( -36A2S-28AB2+44A2Bc- 18A3c2)y9 

+ (i / io!)  ( ~ o B ~ - ~ o A B ~ ~ + ~ o A B ~ ~ + ~ o A ~ B ~ c ~ -  1 6 4 ~ 2 ~ ~ 6  

+64A2B+76A3c26- 10A3B~3-56A3~+2A4c4)y10+ ..., (37) 

#4(y) = (1/3!)y3+ (1/5!) (2B-Ac)y5-(1/6!) 2AyG 

+ (1/7!) (3B2 - 3ABc +A2c2 + 4A6) y7+ (l/S!) (6A2c - 8AB) y8 

+ (1/9!) (24AB6-32A2c6+ 1 0 A 2 + 4 B 3 - 6 A B 2 ~ + 4 A 2 B ~ 2 - A 3 ~ 3 ) ~ 9  

+ (l/lO!) ( -  80A26-20AB2+30A2Bc- 12A3~2)y10 

+ (111 1 !) ( 160A2 + 5B4 - 10AB3c + 60AB26 + 10A2B2c2 + 62A2B 

- 142A2Bc6 + A4c4 - 52A3c - 5A3Bc3 + 63A3c26) yl' 
+ (1/12!) (580A3c6- 72A3B~2+90A2B2~-80A3-40AB3 

- 6 4 ~ 2 ~ 6  + 2 0 ~ 4 ~ 3 )  212 + . . . . (38) 

The solutions must converge for all finite A ,  B, c and y because of the absence of 
singularities in the differential equation. An inspection of (35), (36), (37) and (38) 
indicates that for the range of the parameters considered, the solutions converge 
rather rapidly. For convenience, a further function $ 5 ,  defined by 

$5(Y) = C$,(Y) + $2(Y) - 6$3(Y), (39) 

is also introduced. It is found convenient in later work to use the set of four 
solutions $2, 5b3, #4 and $5. 



c(A1--42) 0 1 ia(4Cot6+a28) -1 

f 2 0 )  f 3 P )  f4P)  f5(1) 0 

h2(-1) h3(-1) 0 h5( - 1) h4( - 1) 

q - 1 )  hk(-l) 0 h a  - 1) h2 - 1) 

0 = f # )  fal) fm f5V) 0 .  

Fl = 

F2 = 

F3 = 

F4 = 

F5 = 

F6 = 

(43) 

(45) 
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To complete the determination of the eigenvalue c it becomes necessary now 
to approximate the $'s, as obviously the infinite series form for the #,s must be 
terminated. It was decided to consider a and R to be of the same order, and to 
limit the calculation to fifth powers of a and R (and combinations of them). 
The odd power is introduced by the boundary condition on the normal stresses. 
No special assumption is made concerning c, although it is considered to be of 
the order of one. Computations based on such an approximation prove straight- 
forward but lengthy. To carry out the next-higher approximation (to the sixth 
power) would triple or quadruple the amount of work necessary, which is already 
considerable. 

Treating a and R to be of the same order gives results which are valid in a 
small circle around the origin in the (a,  R)-plane. Calculations based on expan- 
sions to the first order in the Reynolds number as made by Yih (1954) would give 
results valid in a narrow strip along the a-axis in the (a,T)-plane. Since the 
results of most stability analyses (including this one, as will be seen) indicate 
the onset of instability with small wave-number, it would seem that an approxi- 
mation valid for a wider range of R is more desirable. This was the main factor 
in choosing an analysis based on expansion in terms of powers of the co-ordinate y. 

It is desirable to state the range of a and R for which the approximation is 
valid. Certainly if a and R are both much less than one, the results are very good. 
For a and R of the order of one or slightly larger, it  is felt that the conclusions 
are still qualitatively true, since the denominators of the terms in the series 
increase in a factorial manner while the numerators increase only gradually. 
However, the prohibitive amount of calculations necessary make any definite 
statements on the range of validity impossible. 

Since the calculations are straightforward, they are not included here. Because 
in several calculations it was necessary to take the difference between two small 
numbers of almost equal magnitude, it was considered useful to leave the 
numbers in fractional form. This also facilitated checking of the results. 

When all calculations are carried out, an algebraic equation in integral powers 
of c is obtained. This is 

0 = - 320ia cot 8 + +2-(r + 1) iaR, - Wia3 cot 8 + g(r - 1) a2Rl cot 8 

- 80ia3X - *(r2 - 1) a2R2, + &(r + 1) ia3R1 + i&(r2 + 1) ia3R2, cot 8 

-_ ,2,ria3R2,cotO+=(r- l)a4Rlcot 8-%%a5cot8 

-so-ia5X+++4RlS(r - 1) 

+c{- 1920-3piaR1(r- 1) - 1024a2--?&r+ 1) a2R,cot8 

+ 1 3 1 9 ( ~ 2  + 1 ) aZR,2 - &Zza2R2 r - 6os( y - 1 ) ia3R - 
2 3 1 0  1 2 1  1 7  

-_ 2:8(r2- l)ia3R,2cotB-gg(r+ 1)a4RlcotO-~-a4RlX(r+ 1)) 

+ c2(256(r + 1) iaR, - %x(r2 - 1) a2Rf + L0+5ia3R1(r + 1) 

+$(r2 + 1) ia3Rf cot 8 +eia3R2,r cot O }  

+ c3a2R3(r2 + 1) %l- + 29rl. (46) 
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The root of interest can be computed by assuming c = co + cla + c2 R + c3a2 + . . . , 
and substituting this into (46). After this is done, upon separation into real and 
imaginary parts, the result is 

c, = ( r +  1)  Rl-~~a2X-cot8[-z---a2] 

c .  = ~ a ((‘+ ____ R1 (12 - 2/3a2) - 16a2S(5 - a2) 

443 683 
1920 7 

(r2 + 1) a2RT -cote 64 5 - - 2 + -  --; [ ( i;) 1,164,240 

2787 ra2R; - cot2 8[8/3(r + 1) a2Rl 1 +- 17,640 

The growth rate CT is given by 
0- = aci. (49) 

It can be argued (see, for instance, Schubauer & Skramstad 1947) that the 
most likely wave-number to occur is the one with the highest growth rate. This 
value of a can be determined by setting to zero the derivative of CT with respect 
to a. The relation obtained by this is 

(r2 + 1)  a2R; + - m2R; - cot2 O [ y ( r  + 1) a2Rl]).  (50) 
4410 2787 1 443,683 

291,060 
-~ 

For the case of vertical inclination, the possible roots of (50) are, besides a = 0, 

a,?? = ~[10+p+(100-88p+/32)*], (51) 

where 

(In the case of S = 0,  the roots reduce to 0,3.)  For small p, (51) may be expanded 
using the binomial theorem to obtain 

= ?-{ 1 + 0.lp (1 - 0.44p - 0*O92p2)), (53) 

or, for the root of interest, 
a:, = P(0-9 + 0.15p). (54) 

5. Discussion of results 

An inspection of (48) and the corresponding figures 2, 3 and 4 reveals that for 
the case of vertical inclination and zero surface tension, every value of a makes 
ci zero for zero Reynolds number. Hence the a-axis is the neutral stability curve. 
(The analysis does not hold true for large values of a, however, i t  can be argued 
on physical grounds that in the absence of surface tension there is no restoring 
force when the slope is infinite.) Surface tension has a stabilizing effect (figures 
2, 4) and reduces the range of a for which instability occurs at zero Reynolds 

A. The special case of infinite slope 
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s= 1.0 

I I 
0 0 5  1.0 1.5 2.0 

'"I 

0 0 5  1.0 1.5 2.0 

R, 
FIGURE 2. Curves of neutral stability for flow between vertical walls with various 

values of the surface tension parameter S. u = 0, r = 1.2, 0 = 90". 

R, 
FIGURE 3. The rate of amplification of waves of various wave-numbers 

for the vertical case. S = 0, r = 1.2, 0 = 90". 

I I I I I I I I 
0 5  1.0 1.5 2 0  

0 

Rl 
FIGURE 4. The effect of surface tension on growth rate for the vertical case. 

r = 0.25 x r = 1-2, 8 = 90". 
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number to the point a = 0, hence it can never completely prevent instability. 
From a physical point of view, the effect of surface tension decreases with 
curvature. From a mathematical point of view, S is always accompanied by a 
curvature term (a2), so for very small wave-numbers the stabilizing force would 
be small. 

The shape of the growth rate curves of figure 4 is very similar to the neutral 
stability curve shown by Yih (1954). It might be speculated that the disagree- 
ment between Yih's and Benjamin's (1957) results could be due to the difference 

0.8 

0 4  

FIGURE 5. The effect of surface tension on the celerity of the disturbance 
for the vertical caae. R = 1.0, T = 1.2, 0 = 90". 

in the approximations which might yield different members of the same family of 
curves. Benjamin's result would be the true neutral stability curve, while Yih's 
would be a curve of constant (small) growth rate. 

It is noted from (9) and (47) that the dimensional celerity of the disturbance 
is directly dependent on the difference in densities of the two fluids and the 
velocity of the primary flow. A small Reynolds number implies either large 
viscosity or small difference in densities, hence the speed of propagation of the 
disturbance is small for the approximation considered. The celerity is also small 
for the case of small wave-numbers. The disturbance anticipated by the analysis 
is then in effect almost a standing wave, in the sense that it does not propagate, 
at least not very quickly. 

It is seen from (47) and figure 5 that the surface tension could make the celerity 
negative, hence disturbances would travel uphill. This effect is perhaps un- 
expected, but not unreasonable. Such results have in fact been noted in experi- 
ments conducted by William M. Sangster of the University of Iowa, for layers of 
different thicknesses. 
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If (47) is contrasted with the corresponding results of the stability analyses 
of Yih and Benjamin, it is seen that the celerities represented in their analyses 
have values of the same order as the primary flow for very small Reynolds and 
wave-numbers, while the celerities presented here are many orders smaller than 
the velocity of the primary flow. 

The direct dependence of the disturbance celerity on the difference in densities 
of the two fluids may seem surprising when compared with previous results 
(Lamb 1932, p. 370) for gravity waves. The reason for this difference is that the 
present waves are predominantly influenced by viscosity rather than gravity. 

The fact that the primary flow velocity is zero at the interface may explain 
some aspects of the disturbance celerity. Although a free surface is generally 
regarded as a destabilizing agent, this effect is somewhat diminished in the 
present problem due to the counterflow. If the free surface were replaced by a 
rigid boundary, the problem would be the familiar one of plane Poiseuille flow, 
for which instability is known to occur for Reynolds numbers many orders higher 
than contemplated in the present analysis (see, for example, Lin 1955, p. 38). 

Another interesting feature is that (24) shows that the disturbance amplitude 
is inversely proportional to c. For small c then, even if the y velocity component 
is small, the amplitude of the disturbance may be considerably larger in com- 
parison, 

Naturally, the onset of instability at such low Reynolds numbers does not 
mean the onset of turbulence, but only the onset of waves at the free surface. 
The analysis performed here is, of course, based on the assumption that the two 
fluids do not mix across the interface. 

B. Other slopes 

The results are not as informative for values of 6' other than 90". As the inclina- 
tion becomes even slightly less steep, the 6' terms in (48) predominate and exert 
a strong stabilizing influence. For 6' more than a degree of two away from ver- 
tical, the results probably are not sufficiently accurate to predict instability, 
and higher-order approximations are necessitated. Neutral stability curves are 
shown in figure 6 for various values of the parameter S for the case 0 = 89.5". 
The curve for S = 0 bends towards the a-axis and predicts instability again 
for all small Reynolds numbers. It is believed, however, that this is not a reliable 
result, and that if higher-order terms were present the curve would be almost 
vertical for small a, and then would go in the positive R, direction, as do the 
curves for non-zero values of S. This same effect is shown in figure 7. The results 
shown in figure 8, with a non-zero value of S, are more reliable in regard to the 
shape of the curve, and show that for inclinations other than the vertical, critical 
Reynolds numbers do exist. It seems reasonable that the critical Reynolds 
number should occur at  a = 0. The greater surface tension effect and greater 
dissipation of the disturbance energy at  higher wave-numbers would both tend 
to stabilize the flow. Such tendencies were shown for the case of vertical inclina- 
tion. A definite mathematical answer to this matter would require a higher-order 
approximation. 
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FIGURE 6. Neutral stability curves for the case 8 = 89.5", for various 
values of the surface tension parameter S. r~ = 0, r = 1.2. 

Rl 
FIGURE 7. The rate of amplification of waves of various wave-numbers 

for the cme 8 = 89.5", S = 0, r = 1.2. 
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FIGURE 8. The rate of amplification of waves of various wave-numbers 
for the cme 0 = 89.5', S = 0.05, r = 1.2. 
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6. Conclusions 
From the results presented, the following conclusions can be drawn: 
(a )  For the case of vertical inclination, there are values of a for which the 

flow is unstable at all values of the Reynolds number. The celerity of such 
disturbances is small, but the effect on the interface can be large. 

(b )  The stabilizing effect of surface tension is shown, although surface tension 
can never induce complete stability, since it has no effect at  zero wave-number. 

(c) For slopes other than the vertical, a critical Reynolds number exists. The 
value of the critical Reynolds number probably is the value of R, which occurs 
at a = 0, although a more thorough investigation is needed in order that a 
definite statement can be made in this regard. 

(d) The presence of the interface is responsible for instability at low Reynolds 
numbers at steep slopes. However, the layer in counterflow does contribute a 
stabilizing influence. 

( e )  The critical wave number has been found and is given in equation (54). 
Specific results for the (complex) phase velocity are given in equations (47) 
and (48). 
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